4.8 Article

Single-Particle Investigation of Environmental Redox Processes of Arsenic on Cerium Oxide Nanoparticles by Collision Electrochemistry

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 27, 页码 24725-24734

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b05234

关键词

arsenic; single nanoparticle collision electrochemistry (SPCE); environmental redox processes; cerium oxide

资金

  1. National Science Foundation (NSF) [1610281]
  2. NSF MRSEC program [DMR-1719875]

向作者/读者索取更多资源

Quantification of chemical reactions of nanoparticles (NPs) and their interaction with contaminants is a fundamental need to the understanding of chemical reactivity and surface chemistry of NPs released into the environment. Herein, we propose a novel strategy employing single-particle electrochemistry showing that it is possible to measure reactivity, speciation, and loading of As3+ on individual NPs, using cerium oxide (CeO2) as a model system. We demonstrate that redox reactions and adsorption processes can be electrochemically quantified with high sensitivity via the oxidation of As3+ to As5+ at 0.8 V versus Ag/AgCl or the reduction of As3+ to As-0 at -0.3 V (vs Ag/AgCl) generated by collisions of single particles at an ultramicroelectrode. Using collision electrochemistry, As3+ concentrations were determined in basic conditions showing a maximum adsorption capacity at pH 8. In acidic environments (pH < 4), a small fraction of As3+ was oxidized to As5+ by surface Ce4+ and further adsorbed onto the CeO2 surface as a As5+ bidentate complex. The frequency of current spikes (oxidative or reductive) was proportional to the concentration of As3+ accumulated onto the NPs and was found to be representative of the As3+ concentration in solution. Given its sensitivity and speciation capability, the method can find many applications in the analytical, materials, and environmental chemistry fields where there is a need to quantify the reactivity and surface interactions of NPs. This is the first study demonstrating the capability of single-particle collision electrochemistry to monitor the interaction of heavy metal ions with metal oxide NPs. This knowledge is critical to the fundamental understanding of the risks associated with the release of NPs into the environment for their safe implementation and practical use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据