4.7 Article

MeshCNN: A Network with an Edge

期刊

ACM TRANSACTIONS ON GRAPHICS
卷 38, 期 4, 页码 -

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3306346.3322959

关键词

Geometric Deep Learning; Shape Analysis; Convolutional Neural Network; Shape Segmentation

资金

  1. ERC-StG grant [757497]
  2. Israel Science Foundation as part of the ISF-NSFC joint program [2217/15, 2472/17]
  3. ISF grant [2366/16]

向作者/读者索取更多资源

Polygonal meshes provide an efficient representation for 3D shapes. They explicitly capture both shape surface and topology, and leverage non-uniformity to represent large flat regions as well as sharp, intricate features. This non-uniformity and irregularity, however, inhibits mesh analysis efforts using neural networks that combine convolution and pooling operations. In this paper, we utilize the unique properties of the mesh for a direct analysis of 3D shapes using MeshCNN, a convolutional neural network designed specifically for triangular meshes. Analogous to classic CNNs, MeshCNN combines specialized convolution and pooling layers that operate on the mesh edges, by leveraging their intrinsic geodesic connections. Convolutions are applied on edges and the four edges of their incident triangles, and pooling is applied via an edge collapse operation that retains surface topology, thereby, generating new mesh connectivity for the subsequent convolutions. MeshCNN learns which edges to collapse, thus forming a task-driven process where the network exposes and expands the important features while discarding the redundant ones. We demonstrate the effectiveness of MeshCNN on various learning tasks applied to 3D meshes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据