4.8 Review

Nanozymes: From New Concepts, Mechanisms, and Standards to Applications

期刊

ACCOUNTS OF CHEMICAL RESEARCH
卷 52, 期 8, 页码 2190-2200

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.9b00140

关键词

-

资金

  1. National Key R&D Program of China [2017YFA0205501]
  2. National Natural Science Foundation of China [81722024, 81571728]
  3. Key Research Program of Frontier Sciences [QYZDY-SSW-SMC013]
  4. Youth Innovation Promotion Association [2014078]

向作者/读者索取更多资源

Nanozymes are nanomaterials with intrinsic enzyme-like characteristics that have been booming over the past decade because of their capability to address the limitations of natural enzymes such as low stability, high cost, and difficult storage. Along with the rapid development and ever-deepening understanding of nanoscience and nanotechnology, nanozymes hold promise to serve as direct surrogates of traditional enzymes by mimicking and further engineering the active centers of natural enzymes. In 2007, we reported the first evidence that Fe3O4 nanoparticles (NPs) have intrinsic peroxidase-mimicking activity, and since that time, hundreds of nanomaterials have been found to mimic the catalytic activity of peroxidase, oxidase, catalase, haloperoxidase, glutathione peroxidase, uricase, methane monooxygenase, hydrolase, and superoxide dismutase. Uniquely, a broad variety of nanomaterials have been reported to simultaneously exhibit dual- or multienzyme mimetic activity. For example, Fe3O4 NPs show pH-dependent peroxidase-like and catalase-like activities; Prussian blue NPs simultaneously possess peroxidase-, catalase-, and superoxide dismutase-like activity; and Mn3O4 NPs mimic all three cellular antioxidant enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Taking advantage of the physiochemical properties of nanomaterials, nanozymes have shown a broad range of applications from in vitro detection to replacing specific enzymes in living systems. With the emergence of the new concept of nanozymology, nanozymes have now become an emerging new field connecting nanotechnology and biology. Since the landmark paper on nanozymes was published in 2007, we have extensively explored their catalytic mechanism, established the corresponding standards to quantitatively determine their catalytic activities, and opened up a broad range of applications from biological detection and environmental monitoring to disease diagnosis and biomedicine development. Here we mainly focus on our progress in the systematic design and construction of functionally specific nanozymes, the standardization of nanozyme research, and the exploration of their applications for replacing natural enzymes in living systems. We also show that, by combining the unique physicochemical properties and enzyme-like catalytic activities, nanozymes can offer a variety of multifunctional platforms with a broad of applications from in vitro detection to in vivo monitoring and therapy. For instance, targeting antibody-conjugated ferromagnetic nanozymes simultaneously provide three functions: target capture, magnetic separation, and nanozyme color development for target detection. We finally will address the prospect of nanozyme research to become nanozymology. We expect that nanozymes with unique physicochemical properties and intrinsic enzyme-mimicking catalytic properties. will attract broad interest in both fundamental research and practical applications and offer new opportunities for traditional enzymology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据