4.4 Article

A stellar flare-coronal mass ejection event revealed by X-ray plasma motions

期刊

NATURE ASTRONOMY
卷 3, 期 8, 页码 742-748

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41550-019-0781-4

关键词

-

资金

  1. ASI-INAF [2017-14]

向作者/读者索取更多资源

Coronal mass ejections (CMEs), often associated with flares(1-3), are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to ten thousand times higher(4), and CME effects on stellar physics and circumstellar environments are predicted to be substantial(5-9). However, stellar CMEs remain observationally unexplored. Using time-resolved high-resolution X-ray spectroscopy of a stellar flare on the active star HR 9024 observed with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory space telescope, we distinctly detected Doppler shifts in S xvi, Si xiv and Mg xii lines that indicate upward and downward motions of hot plasmas (around 10-25 MK) within the flaring loop, with velocities of 100-400 km s(-1), in agreement with a model of a flaring magnetic tube. Most notably, we also detected a later blueshift in the O viii line that reveals an upward motion, with velocity 90 +/- 30 km s(-1), of cool plasma (about 4 MK), that we ascribe to a CME coupled to the flare. From this evidence we were able to derive a CME mass of 1. 2(-0.8)(+2.6) x 10(21) g and a CME kinetic energy of 5. 2(-3.6)(+27.7) x 10(34) erg. These values provide clues in the extrapolation of the solar case to higher activity levels in other stars, suggesting that CMEs could indeed be a major cause of mass and angular momentum loss.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据