4.5 Review

A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts

期刊

ADVANCES IN MANUFACTURING
卷 7, 期 2, 页码 155-173

出版社

SPRINGER
DOI: 10.1007/s40436-019-00253-6

关键词

Feedstock extrusion; Rapid production; Complex-shaped metallic; Ceramic parts

向作者/读者索取更多资源

The extrusion-based additive manufacturing (EAM) technique is recently being employed for rapid production of metals and ceramic components. This technique involves extruding the metal or ceramic material in solid powder form mixed with a binder (i.e., an expendable viscous fluid), which is removed from the part after 3D printing. These technologies rely on the large design freedom allowed and the cost efficiency advantage over alternative metal additive manufacturing processes that are based on high energy beams, such as laser or electron beams. The EAM of metals and ceramics is not yet widespread, but published scientific and technical literature on it is rapidly growing. However, this literature is still less extensive than that on the fused deposition modeling (FDM) of plastics or the selective laser melting (SLM) of metals. This paper aims at filling this gap. FDM and powder injection molding are identified as preceding or enabling technologies for EAM. This paper systematically reviews all aspects of the feedstock EAM processes used for production of complex-shaped parts. The unique characteristics and advantages of these processes are also discussed with respect to materials and process steps. In addition, the key process parameters are explained to illustrate the suitability of the EAM process for diverse application domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据