4.6 Article

Theoretical Analysis of a Novel Microstructure Fiber Sensor Based on Lossy Mode Resonance

期刊

ELECTRONICS
卷 8, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/electronics8050484

关键词

fiber sensor; microstructure fiber; lossy mode resonance; metallic oxide film

资金

  1. National Training Program of Innovation and Entrepreneurship for Undergraduates [180147]
  2. Fundamental Research Funds for the Central Universities [N180402023]

向作者/读者索取更多资源

In this paper, we proposed a novel D-shaped microstructure fiber sensor based on lossy mode resonance (LMR). TiO2/HfO2 bilayer film is coated on the exposed-core portion of photonic crystal fiber (PCF) as a sensing channel. The asymmetrical LMR region generates strong birefringence, which leads to the separation of X polarization and Y polarization. This structure excites a stronger evanescent field than the conventional D-shaped fiber, thereby greatly improving the sensor sensitivity. Additionally, the metallic oxide bilayer can further enhance the sensor's performance. We numerically investigated the influence of the number of air holes removed in PCF on the sensor performance and the proportion of TiO2 to HfO2 in theory for the first time. The results show that an ultra-high sensitivity of 140,000 nm/RIU is obtained, which is an order of magnitude higher than that of surface plasmon resonance sensors with a similar waveguide structure and LMR sensor coated film. This achievement means that LMR-based sensing systems are more sensitive than many sensors in real-time and distributed measurements, which will play an extremely important guiding role in the structural design of microstructure fiber sensors in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据