4.6 Article

Acidification is an Essential Process of Cold Atmospheric Plasma and Promotes the Anti-Cancer Effect on Malignant Melanoma Cells

期刊

CANCERS
卷 11, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/cancers11050671

关键词

cold atmospheric plasma; malignant melanoma; calcium signaling; acidification; nitration

类别

资金

  1. German Research Association (DFG) [BO1573]
  2. German Cancer Aid
  3. Interdisciplinary Center for Clinical Research (IZKF) Erlangen [D24, E27]

向作者/读者索取更多资源

(1) Background: Cold atmospheric plasma (CAP) is ionized gas near room temperature. The anti-cancer effects of CAP were confirmed for several cancer types and were attributed to CAP-induced reactive species. However, the mode of action of CAP is still not well understood. (2) Methods: Changes in cytoplasmic Ca2+ level after CAP treatment of malignant melanoma cells were analyzed via the intracellular Ca2+ indicator fura-2 AM. CAP-produced reactive species were determined by fluorescence spectroscopic and protein nitration by Western Blot analysis. (3) Results: CAP caused a strong acidification of water and solutions that were buffered with the so-called Good buffers, while phosphate-buffered solutions with higher buffer capacity showed minor pH reductions. The CAP-induced Ca2+ influx in melanoma cells was stronger in acidic pH than in physiological conditions. NO formation that is induced by CAP was dose- and pH-dependent and CAP-treated solutions only caused protein nitration in cells under acidic conditions. (4) Conclusions: We describe the impact of CAP-induced acidification on the anti-cancer effects of CAP. A synergistic effect of CAP-induced ROS, RNS, and acidic conditions affected the intracellular Ca2+ level of melanoma cells. As the microenvironment of tumors is often acidic, further acidification might be one reason for the specific anti-cancer effects of CAP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据