4.6 Article

Micro/nano-hierarchical structured TiO2 coating on titanium by micro-arc oxidation enhances osteoblast adhesion and differentiation

期刊

ROYAL SOCIETY OPEN SCIENCE
卷 6, 期 4, 页码 -

出版社

ROYAL SOC
DOI: 10.1098/rsos.182031

关键词

micro-arc oxidation; titanium; MG63; osteogenic differentiation; dental implants

资金

  1. National Natural Science Foundation of China [51371042]
  2. Liaoning Province Natural Science Fund Project [20180550420]
  3. Liaoning Provincial Universities [115-3110617005]

向作者/读者索取更多资源

Nano-structured and micro/nano-hierarchical structured TiO2 coatings were produced on polished titanium by the micro-arc oxidation (MAO) technique. This study was conducted to screen a suitable structured TiO2 coating for osteoblast adhesion and differentiation in dental implants. The formulation was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and wettability testing. Adhesion, proliferation and osteogenic differentiation of MG63 cells were analysed by SEM, Cell Counting Kit-8 (CCK-8) and quantitative real-time PCR. The micro/nano-hierarchical structured TiO2 coating with both slots and pores showed the best morphology and wettability. XRD analysis revealed that rutile predominated along with a minor amount of anatase in both TiO2 coatings. Adhesion and extension of MG63 cells on the micro/nano-hierarchical structured TiO2 coating were the most favourable. MG63 cells showed higher growth rates on the micro/nano-hierarchical structured TiO2 coating at 1 and 3 days. Osteogenic-related gene expression was markedly increased in the micro/nano-hierarchical structured TiO2 coating group compared with the polished titanium group at 7, 14 and 21 days. These results revealed the micro/nano-hierarchical structured TiO2 coating as a promising surface modification and suitable biomaterial for use with dental implants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据