4.4 Article

Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity

期刊

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
卷 179, 期 6, 页码 1060-1072

出版社

SPRINGER
DOI: 10.1007/s12010-016-2050-7

关键词

Biomimetic matrix; Immobilization; Encapsulation; Pectinase; Calcium oxalate

资金

  1. URI-Erechim
  2. CNPq
  3. FAPERGS
  4. CAPES

向作者/读者索取更多资源

Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K (m) of 0.003, 0.0013, and 0.0022 g mL(-1) and V (max) of 3.85, 4.32, and 3.17 mu mol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据