4.5 Article

Clustering River Profiles to Classify Geomorphic Domains

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE
卷 124, 期 6, 页码 1417-1439

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019JF005025

关键词

clustering; river networks; topographic analysis; landscape evolution modeling

资金

  1. Geo. X fellowship

向作者/读者索取更多资源

The structure and organization of river networks has been used for decades to investigate the influence of climate and tectonics on landscapes. The majority of these studies either analyze rivers in profile view by extracting channel steepness or calculate planform metrics such as drainage density. However, these techniques rely on the assumption of homogeneity: that intrinsic and external factors are spatially or temporally invariant over the measured profile. This assumption is violated for the majority of Earth's landscapes, where variations in uplift rate, rock strength, climate, and geomorphic process are almost ubiquitous. We propose a method for classifying river profiles to identify landscape regions with similar characteristics by adapting hierarchical clustering algorithms developed for time series data. We first test our clustering on two landscape evolution scenarios and find that we can successfully cluster regions with different erodibility and detect the transient response to sudden base level fall. We then test our method in two real landscapes: first in Bitterroot National Forest, Idaho, where we demonstrate that our method can detect transient incision waves and the topographic signature of fluvial and debris flow process regimes; and second, on Santa Cruz Island, California, where our technique identifies spatial patterns in lithology not detectable through normalized channel steepness analysis. By calculating channel steepness separately for each cluster, our method allows the extraction of more reliable steepness metrics than if calculated for the landscape as a whole. These examples demonstrate the method's ability to disentangle fluvial morphology in complex lithological and tectonic settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据