4.7 Article

Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders

期刊

MATERIALS & DESIGN
卷 167, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2019.107634

关键词

3D printing; Alkali activation; Fly ash; Extrusion rheology; Yield stress

资金

  1. National Science Foundation [CMMI: 1727445]

向作者/读者索取更多资源

Material design of alkali activated fly ash-based binders for extrusion-based 3D printing, the rheological responses that are influential in ensuring printability, and the properties of such binders are discussed in this paper. Fly ash is supplemented with fine limestone, slag, or portland cement to provide adequate microstructural packing required for printability. The alkaline activators help reduce the yield stress and enhance the cohesiveness of the mixtures. Based on the measured shear yield stress at different times and concurrent printing of a filament, the printability window and yield stress bounds for printability, applicable for the chosen printing parameters, are established. This approach could be used for mixture qualification for extrusion-based printing. The Benbow-Bridgwater model is implemented on extrusion rheology results of pastes to determine the extrusion yield stress and wall slip shear stress, which are useful process-related parameters. It is shown that these parameters can also be related to shear and extensional rheological properties of alkali-activated pastes, thus ensuring a much-needed link between parameters related to material design and the process of extrusion. Mechanical properties and pore structure similar to those of conventionally cast mixtures are achieved. (C) 2019 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据