4.7 Article

Capacitive Stretch Sensing for Robotic Skins

期刊

SOFT ROBOTICS
卷 6, 期 3, 页码 389-398

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/soro.2018.0055

关键词

dielectric elastomer sensor; lumped parameter approximation; resistive stretch sensor; transmission line; transient resistance; capacitance undershoot

类别

资金

  1. StretchSense Ltd.

向作者/读者索取更多资源

Various types of artificial skins have been developed to provide robots with a sense of touch. Because of their compliance, dielectric elastomer (DE) capacitive sensors are particularly suitable for soft robots. Although the electrodes of DE sensors exhibit nonlinear effects such as transient resistance changes and resistance peaks, this does not affect the capacitance readout representing stretch, as long as the frequency of the excitation voltage used for capacitance measurement is sufficiently low. At higher frequencies, however, the approximation of a DE sensor with an ideal capacitor and a series resistor accounting for electrode resistivity leads to an underestimation of capacitance in static sensors. We demonstrate how this effect is amplified by peaks and transient changes of electrode resistance caused by periodic stretching. At high frequencies, distinctive capacitance undershoots occurred that correlated with the change of electrode resistance. The close match between a simulation of the DE sensor as an R-C transmission line and recorded data supports the hypothesis of the undershoot having been caused by dynamic electrode resistance changes and the lumped parameter approximation. Our results show that nonlinear responses in DE sensors can be avoided by appropriately adjusting the excitation frequency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据