4.5 Article

Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins

期刊

IUCRJ
卷 6, 期 -, 页码 543-551

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S2052252519003956

关键词

XFELs; microcrystals; serial femtosecond crystallography; serial synchrotron crystallography; serial millisecond crystallography; fixed targets; heme peroxidase; metalloproteins; radiation damage

资金

  1. Leverhulme Trust [RPG-2014-355]
  2. BBSRC [BB/M022714/1]
  3. BBSRC Japan-UK International Partnering Award [BB/R021015/1]
  4. BBSRC [BB/R021015/1] Funding Source: UKRI

向作者/读者索取更多资源

An approach is demonstrated to obtain, in a sample- and time-efficient manner, multiple dose-resolved crystal structures from room-temperature protein microcrystals using identical fixed-target supports at both synchrotrons and X-ray free-electron lasers (XFELs). This approach allows direct comparison of dose-resolved serial synchrotron and damage-free XFEL serial femtosecond crystallography structures of radiation-sensitive proteins. Specifically, serial synchrotron structures of a heme peroxidase enzyme reveal that X-ray induced changes occur at far lower doses than those at which diffraction quality is compromised (the Garman limit), consistent with previous studies on the reduction of heme proteins by low X-ray doses. In these structures, a functionally relevant bond length is shown to vary rapidly as a function of absorbed dose, with all room-temperature synchrotron structures exhibiting linear deformation of the active site compared with the XFEL structure. It is demonstrated that extrapolation of dose-dependent synchrotron structures to zero dose can closely approximate the damage-free XFEL structure. This approach is widely applicable to any protein where the crystal structure is altered by the synchrotron X-ray beam and provides a solution to the urgent requirement to determine intact structures of such proteins in a high-throughput and accessible manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据