4.6 Article

Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I NosZ from Those Harboring Clade II NosZ

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 82, 期 13, 页码 3793-3800

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00409-16

关键词

-

资金

  1. U.S. Department of Energy, Office of Biological and Environmental Research, Genomic Science Program [DE-SC0006662]
  2. National Research Foundation of Korea [2014R1A1A2058543]
  3. National Research Foundation of Korea [2014R1A1A2058543] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Bacteria capable of reduction of nitrous oxide (N2O) to N-2 separate into clade I and clade II organisms on the basis of nos operon structures and nosZ sequence features. To explore the possible ecological consequences of distinct nos clusters, the growth of bacterial isolates with either clade I (Pseudomonas stutzeri strain DCP-Ps1, Shewanella loihica strain PV-4) or clade II (Dechloromonas aromatica strain RCB, Anaeromyxobacter dehalogenans strain 2CP-C) nosZ with N2O was examined. Growth curves did not reveal trends distinguishing the clade I and clade II organisms tested; however, the growth yields of clade II organisms exceeded those of clade I organisms by 1.5- to 1.8-fold. Further, whole-cell half-saturation constants (K(s)s) for N2O distinguished clade I from clade II organisms. The apparent Ks values of 0.324 +/- 0.078 mu M for D. aromatica and 1.34 +/- 0.35 mu M for A. dehalogenans were significantly lower than the values measured for P. stutzeri (35.5 +/- 9.3 mu M) and S. loihica (7.07 +/- 1.13 mu M). Genome sequencing demonstrated that Dechloromonas denitrificans possessed a clade II nosZ gene, and a measured Ks of 1.01 +/- 0.18 mu M for N2O was consistent with the values determined for the other clade II organisms tested. These observations provide a plausible mechanistic basis for why the relative activity of bacteria with clade I nos operons compared to that of bacteria with clade II nos operons may control N2O emissions and determine a soil's N2O sink capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据