4.6 Article

Engineering Biomimetic Gelatin Based Nanostructures as Synthetic Substrates for Cell Culture

期刊

APPLIED SCIENCES-BASEL
卷 9, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/app9081583

关键词

electrospinning; polycaprolactone (PCL); gelatin; nanofibers; P188

向作者/读者索取更多资源

There is a need for synthetic substrates that replicate the natural environment for in vitro intestinal models. Electrospinning is one of the most versatile and cost-effective techniques to produce nanofibrous scaffolds mimicking the basement membrane topography. In this study, three different novel electrospun nanofibrous scaffolds made of a polycaprolactone (PCL), gelatin, and poloxamer 188 (P188) blend were produced and compared with PCL and PCL/gelatin fibers produced using the same solvent system and electrospinning parameters. Each polymer solution used in this experiment was electrospun at four different voltages to study its influence on fiber diameter. The morphology and physical characteristics of the fibers were studied using scanning electron microscopy and atomic force microscopy. The average fiber diameter of all scaffolds was within 200-600 nm and no significant decrease in diameter with an increase in voltage was observed. Attenuated total reflection Fourier transform infrared spectroscopy was used to determine the chemical characteristics of the nanofibrous scaffold. The conductivity of the polymer solutions was also analyzed. Biocompatibility of the scaffolds was determined by a cell proliferation study performed using colorectal carcinoma (Caco-2) cells. PCL/gelatin/P188 scaffolds exhibited higher cell proliferation compared to PCL, PCL/gelatin scaffolds, and the control (tissue culture multi-well plate) with PCL/gelatin/P188 80:10:10 sample showing the highest cell proliferation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据