4.6 Article

Simulation Research on the Time-Varying Meshing Stiffness and Vibration Response of Micro-Cracks in Gears under Variable Tooth Shape Parameters

期刊

APPLIED SCIENCES-BASEL
卷 9, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/app9071512

关键词

meshing stiffness; vibration response; pressure angle; modulus; tooth number

资金

  1. National Natural Science Foundation of China [51575007, 51805022]
  2. Key Laboratory of Advanced Manufacturing Technology

向作者/读者索取更多资源

The gear is one of the important parts of a rotary gearbox. Once catastrophic gear failure occurs, it will cause a great threat to production and life safety. The crack is an important failure factor causing changes in time-varying stiffness and vibration response. It is difficult to effectively identify the vibration response and meshing stiffness changes when there is a fine crack in the gear. Therefore, it is of great importance to improve the accuracy of meshing stiffness calculation and dynamic simulations under micro-cracks. Investigations of meshing stiffness and the vibration response of a gearbox is almost all about fixed gear shape parameters. However, the actual production process of gear system needs to change gear shape parameters. In this paper, the meshing stiffness and vibration response of the dynamic simulation signals of gear teeth with different crack depths at different tooth shape parameters (the pressure angle, the modulus, and the tooth number) were calculated, respectively. The influence of cracks on the vibration response was investigated by the fault detection indicators, the Root Mean Square (RMS), the kurtosis, and the crest factor. The result shows that when the pressure angle and modulus change, the vibration response changes erratically. However, when the tooth numbers change, the vibration response changes regularly. The results could be a guide for choosing gears in different shape parameters when system stability is the aim.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据