4.6 Article

A Deep Learning Method for Bearing Fault Diagnosis through Stacked Residual Dilated Convolutions

期刊

APPLIED SCIENCES-BASEL
卷 9, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/app9091823

关键词

dilated convolution; residual network; LSTM; bearing fault diagnosis

资金

  1. National Science Foundation of China [51775348, U1637211]

向作者/读者索取更多资源

Real-time monitoring and fault diagnosis of bearings are of great significance to improve production safety, prevent major accidents, and reduce production costs. However, there are three primary concerns in the current research, namely real-time performance, effectiveness, and generalization performance. In this paper, a deep learning method based on stacked residual dilated convolutional neural network (SRDCNN) is proposed for real-time bearing fault diagnosis, which is subtly combined by the dilated convolution, the input gate structure of long short-term memory network (LSTM) and the residual network. In the SRDCNN model, the dilated convolution is used to exponentially increase the receptive field of convolution kernel and extract features from the sample with more points, alleviating the influence of randomness. The input gate structure of LSTM could effectively remove noise and control the entry of information contained in the input sample. Meanwhile, the residual network is introduced to overcome the problem of vanishing gradients caused by the deeper structure of the neural network, hence improving the overall classification accuracy. The experimental results indicate that compared with three excellent models, the proposed SRDCNN model has higher denoising ability and better workload adaptability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据