4.6 Article

Spatial Data Reconstruction via ADMM and Spatial Spline Regression

期刊

APPLIED SCIENCES-BASEL
卷 9, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/app9091733

关键词

spatial sparse recovery; constrained spatial smoothing; spatial spline regression; alternating direction method of multipliers

向作者/读者索取更多资源

Reconstructing fine-grained spatial densities from coarse-grained measurements, namely the aggregate observations recorded for each subregion in the spatial field of interest, is a critical problem in many real world applications. In this paper, we propose a novel Constrained Spatial Smoothing (CSS) approach for the problem of spatial data reconstruction. We observe that local continuity exists in many types of spatial data. Based on this observation, our approach performs sparse recovery via a finite element method, while in the meantime enforcing the aggregated observation constraints through an innovative use of the Alternating Direction Method of Multipliers (ADMM) algorithm framework. Furthermore, our approach is able to incorporate external information as a regression add-on to further enhance recovery performance. To evaluate our approach, we study the problem of reconstructing the spatial distribution of cellphone traffic volumes based on aggregate volumes recorded at sparsely scattered base stations. We perform extensive experiments based on a large dataset of Call Detail Records and a geographical and demographical attribute dataset from the city of Milan, and compare our approach with other methods such as Spatial Spline Regression. The evaluation results show that our approach significantly outperforms various baseline approaches. This proves that jointly modeling the underlying spatial continuity and the local features that characterize the heterogeneity of different locations can help improve the performance of spatial recovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据