4.8 Article

Anisotropic Plasmonic Metal Heterostructures as Theranostic Nanosystems for Near Infrared Light-Activated Fluorescence Amplification and Phototherapy

期刊

ADVANCED SCIENCE
卷 6, 期 11, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201900158

关键词

anisotropic heterostructures; fluorescence amplification; hot electrons; phototherapy; theranostics

资金

  1. National Natural Science Foundation of China [21573216, 21703232, 61471345]
  2. Recruitment Program of Global Youth Experts (1000 plans)
  3. Hundred Talent Program of Chinese Academy of Sciences
  4. Science and Technology Development Project Foundation of Jilin Province [20160101304JC, 20180520145JH]
  5. Shanghai Science and Technology Committee [16JC1403500]

向作者/读者索取更多资源

The development of sophisticated theranostic systems for simultaneous near infrared (NIR) fluorescence imaging and phototherapy is of particular interest. Herein, anisotropic plasmonic metal heterostructures, Pt end-deposited Au nanorods (PEA NRs), are developed to efficiently produce hot electrons under 808 nm laser irradiation, exhibiting the strong electric density. These hot electrons can release the heat through electron-phonon relaxation and form reactive oxygen species through chemical transformation, as a result of potent photothermal and photodynamic performance. Simultaneously, the confined electromagnetic field of PEA NRs can transfer energy to adjacent polyethylene glycol (PEG)-linked NIR fluorophores (CF) based on their energy overlap mechanism, leading to remarkable NIR fluorescence amplification in CF-PEA NRs. Various PEG linkers (1, 3.4, 5.0, and 10 kD) are employed to regulate the distance between CF and PEA NRs of CF-PEA NRs, and the maximum fluorescence intensity is achieved in CF5k-PEA NRs. After further attachment with i-motif DNA/Nrf2 siRNA chimera to simultaneously suppress both cellular antioxidant defense and hyperthermia resistance effects, the final biocompatible CF5k -bPEA@siRNA NRs present promising NIR fluorescence imaging ability and 808 nm laser-activated photothermal and photodynamic therapeutic effect in MCF7 cells and tumor-bearing mice, holding great potential for cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据