4.3 Article

Adaptive covariance estimation of LiDAR-based positioning errors for UAVs

期刊

出版社

WILEY PERIODICALS, INC
DOI: 10.1002/navi.307

关键词

-

资金

  1. [NNX17AC13G]

向作者/读者索取更多资源

Outdoor positioning for unmanned aerial vehicles (UAVs) commonly relies on global navigation satellite system (GNSS) signals, which might be reflected or blocked in urban areas. Thus, additional on-board sensors such as light detection and ranging (LiDAR) are desirable to aid positioning. To fuse measurements from different sensors, it is important to accurately characterize the error covariance matrices of individual sensor measurements. We propose a novel method for adaptively estimating the LiDAR-based positioning error covariance matrix based on the point cloud features surrounding the UAV. We model the position error as a multivariate Gaussian distribution and estimate its covariance matrix from individual surface and edge feature points. Simulations show that our model is more accurate than a distance-based covariance matrix model. Furthermore, we conduct an outdoor experiment that fuses global positioning system (GPS) signals and LiDAR position measurements. We demonstrate a clear improvement in the UAV's global position estimation using our adaptive covariance matrix for LiDAR-based measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据