4.7 Article

The Fluorescent Quenching Mechanism of N and S Co-Doped Graphene Quantum Dots with Fe3+ and Hg2+ Ions and Their Application as a Novel Fluorescent Sensor

期刊

NANOMATERIALS
卷 9, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/nano9050738

关键词

N and S co-doped graphene quantum dots; fluorescence quenching; DFT; non-radiative electron transfer; inner filter effect; fluorescence sensor

资金

  1. Department of Science and Technology of Yunnan Province via the Key Project for the Science and Technology [2017FA025]
  2. National Natural Science Foundation of China [61761047, 41876055]
  3. Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province

向作者/读者索取更多资源

The fluorescence intensity of N, S co-doped graphene quantum dots (N, S-GQDs) can be quenched by Fe3+ and Hg2+. Density functional theory (DFT) simulation and experimental studies indicate that the fluorescence quenching mechanisms for Fe3+ and Hg2+ detection are mainly attributed to the inner filter effect (IFE) and dynamic quenching process, respectively. The electronegativity difference between C and doped atoms (N, S) in favor to introduce negative charge sites on the surface of N, S-GQDs leads to charge redistribution. Those negative charge sites facilitate the adsorption of cations on the N, S-GQDs' surface. Atomic population analysis results show that some charge transfer from Fe3+ and Hg2+ to N, S-GQDs, which relate to the fluorescent quenching of N, S-GQDs. In addition, negative adsorption energy indicates the adsorption of Hg2+ and Fe2+ is energetically favorable, which also contributes to the adsorption of quencher ions. Blue fluorescent N, S-GQDs were synthesized by a facile one-pot hydrothermal treatment. Fluorescent lifetime and UV-vis measurements further validate the fluorescent quenching mechanism is related to the electron transfer dynamic quenching and IFE quenching. The as-synthesized N, S-GQDs were applied as a fluorescent probe for Fe3+ and Hg2+ detection. Results indicate that N, S-GQDs have good sensitivity and selectivity on Fe3+ and Hg2+ with a detection limit as low as 2.88 and 0.27 nM, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据