4.4 Article

A Novel Human Epithelial Enteroid Model of Necrotizing Enterocolitis

期刊

出版社

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/59194

关键词

Immunology and Infection; Issue 146; Enteroid; epithelial organoid; Necrotizing Enterocolitis; LPS model; intestinal crypt; stem cells; human tissue model

资金

  1. National Institute of Health Institute of Diabetes and Digestive and Kidney Disease Grant [K08DK106450]
  2. Jay Grosfeld Award from the American Pediatric Surgical Association

向作者/读者索取更多资源

Necrotizing enterocolitis (NEC) is a devastating disease of newborn infants. It is characterized by multiple pathophysiologic alterations in the human intestinal epithelium, leading to increased intestinal permeability, impaired restitution, and increased cell death. Although there are numerous animal models of NEC, response to injury and therapeutic interventions may be highly variable between species. Furthermore, it is ethically challenging to study disease pathophysiology or novel therapeutic agents directly in human subjects, especially children. Therefore, it is highly desirable to develop a novel model of NEC using human tissue. Enteroids are 3-dimensional organoids derived from intestinal epithelial cells. They are ideal for the study of complex physiologic interactions, cell signaling, and host-pathogen defense. In this manuscript we describe a protocol that cultures human enteroids after isolating intestinal stem cells from patients undergoing bowel resection. The crypt cells are cultured in media containing growth factors that encourage differentiation into the various cell types native of the human intestinal epithelium. These cells are grown in a synthetic, collagenous mix of proteins that serve as a scaffold, mimicking the extra-cellular basement membrane. As a result, enteroids develop apical-basolateral polarity. Co-administration of lipopolysaccharide (LPS) in media causes an inflammatory response in the enteroids, leading to histologic, genetic, and protein expression alterations similar to those seen in human NEC. An experimental model of NEC using human tissue may provide a more accurate platform for drug and treatment testing prior to human trials, as we strive to identify a cure for this disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据