4.3 Article

Adsorptive performance of a mixture of three nonliving algae classes for nickel remediation in synthesized wastewater

出版社

BMC
DOI: 10.1007/s40201-019-00367-w

关键词

Algal biomass; Nickel; Biosorption; Isotherm; Kinetic; Thermodynamic

向作者/读者索取更多资源

Purpose The present study provided a comprehensive description regarding the application of a mixture of three nonliving classes of algae as a promising and inexpensive biosorbent for removing toxic nickel (Ni(II)) ions from the aqueous medium. Methods The biosorption process was tested by varying several experimental parameters such as pH (2-8), contaminant concentration (20-300 mg/L), biosorbent content (0.2-2 g/100 mL), and temperature (20-40 degrees C). In addition, the competition effects of the presence of Pb(II), Cu(II), and Zn(II) ions on the Ni(II) removal efficiency was studied by varying their concentrations from 30 to 40 mg/L. Results The microscopic analysis of algae demonstrated that the used biosorbent consisted mainly of Chrysophyta (80%), Chlorophyte (14%), and Cyanophyta (6%). Results demonstrated that these environmental parameters influenced the removal efficiency with a different degree and there was no stable effects rank at conditions under examination. FT-IR and SEM analysis revealed that the biosorbent surface consists of many strong and active groups of negative valences such as hydroxyl and carboxyl groups, thus exhibiting several morphological properties of interest. Further, it was found that the Temkin model best fitted the isotherm biosorption data. The kinetic study showed that the Ni(II) biosorption was rapid within first 20 min of reaction time, thereby following a pseudo-second-order model, which in turn demonstrated a chemisorption process of Ni(II) ions reaction with the biosorbent binding sites. Also, the thermodynamic study suggested that the biosorption process of Ni(II) onto algal biomass was a spontaneous and endothermic in nature. The maximum uptake of Ni(II) was 9.848 mg/g under optimized conditions and neutral environment. Conclusions Thus, this significant finding suggested a favorable and eco-friendly treatment mechanism for removal of Ni(II) ions from aqueous medium via biosorption onto the used mixture of nonliving algal biomass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据