4.6 Article

Facile Mechanochemical Synthesis of Nickel/Graphene Oxide Nanocomposites with Unique and Tunable Morphology: Applications in Heterogeneous Catalysis and Supercapacitors

期刊

CATALYSTS
卷 9, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/catal9050486

关键词

graphene oxide; mechanochemical synthesis; Ni-nanocomposites; reduction; reusable; supercapacitor

资金

  1. Konkuk University KU research professor program

向作者/读者索取更多资源

In this study, a very simple and highly effective mechanochemical preparation method was developed for the preparation of Ni nanoparticles supported graphene oxide (GO) nanocomposites (Ni/GO, where Ni is a composition of Ni(OH)(2), NiOOH, NiO, Ni2O3 and NiO2), 3 wt% NiO/GO (Ni/GO-1) and 8 wt% NiO/GO(Ni/GO-2). The developed method is not only very simple and efficient, but also, the morphology of Ni/GO nanocomposites can be tuned by simply varying the metal loading. Morphology and specific surface area of the resultant Ni/GO nanocomposites were investigated by mean of AFM, HR-TEM and BET. Chemical sate and factual content of Ni in Ni/GO-1 and Ni/GO-2, and the presence of defective sites in Ni-nanocomposites were investigated in detail. To our delight, the prepared Ni/GO-2 demonstrated superior catalytic activity toward the reduction of 2- and 4-nitrophenol in water with high rate constant (kapp) of 35.4 x 10(-3) s(-1). To the best of our knowledge, this is the best efficient Ni-based graphene nanocomposites for the reduction of 2- and 4-NP reported to date. The Ni/GO-1 and Ni/GO-2 demonstrated an excellent reusability; no loss in its catalytic activity was noticed, even after 10th cycle. Surprisingly the Ni/GO-2 as electrode material exhibited an excellent specific capacitance of 461 F/g in 6 M KOH at a scan rate of 5 mV. Moreover, the Ni/GO nanocomposites were found to possess poor electrical resistance and high stability (no significant change in the specific capacitance even after 1000 cycles).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据