4.8 Article

A facile synthesis of versatile Cu2-xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging

期刊

BIOMATERIALS
卷 57, 期 -, 页码 12-21

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2015.04.020

关键词

Cu2-xS nanoprobe; Magnetic resonance imaging; Infrared thermal imaging; Photoacoustic imaging; Contrast agent

资金

  1. National Basic Research Program of China (973 Program) [2011CB707905]
  2. China National Funds for Distinguished Young Scientists [51225202]
  3. National Natural Science Foundation of China [51132009, 81371570]
  4. Shanghai Excellent Academic Leaders Program [14XD1403800]

向作者/读者索取更多资源

A novel type of intelligent nanoprobe by using single component of Cu2-xS for multimodal imaging has been facilely and rapidly synthesized in scale via thermal decomposition followed by biomimetic phospholipid modification, which endows them with uniform and small nanoparticle size (ca.15 nm), well phosphate buffer saline (PBS) dispersity, high stability, and excellent biocompatibility. The assynthesized Cu2-x nanoprobes (Cu2-xS NPs) are capable of providing contrast enhancement for T1-weighted magnetic resonance imaging (MRI), as demonstrated by the both in vitro and in vivo imaging investigations for the first time. In addition, due to their strong near infrared (NIR) optical absorption, they can also serve as a candidate contrast agent for enhanced infrared thermal/photoacoustic imaging, to meet the shortfalls of MRI. Hence, complementary and potentially more comprehensive information can be acquired for the early detection and accurate diagnosis of cancer. Furthermore, negligible systematic side effects to the blood and tissue were observed in a relatively long period of 3 months. The distinctive multimodal imaging capability with excellent hemo/histocompatibility of the Cu2-xS NPs could open up a new molecular imaging possibility for detecting and diagnosing cancer or other diseases in the future.(C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据