4.8 Article

Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity

期刊

NANO ENERGY
卷 59, 期 -, 页码 311-320

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.02.045

关键词

MgAgSb; Zn-doping and heat-treating; All-scale hierarchical architectures; Gruneisen parameter; Thermoelectric properties

资金

  1. National Natural Science Foundation of China [51572049, 51562005, 51772056]
  2. Natural Science Foundation of Guangxi Province [2015GXNSFFA139002, 2016GXNSFBA380152]
  3. JSPS KAKENHI [JP17H05328]

向作者/读者索取更多资源

MgAgSb-based materials are ideal candidates for thermoelectric applications due to several advantages, such as rich elements, low cost and excellent mechanical robustness. Recently, the all-scale hierarchical architecture and strong anharmonicity in bonding are realized as effective strategies to reduce the lattice thermal conductivity greatly. Here, a design of the all-scale hierarchical architectures, in which the phonon is scattered by the high density of grain boundaries, dislocation, stacking faults, twin boundaries and nanopores, and enhancement of Gruneisen parameter have been demonstrated in reducing the lattice thermal conductivity of MgAgSb materials in the whole temperature range, resulting in an ultralow lattice thermal conductivity similar to 0.45 W m(-1) K-1 at 473 K. Furthermore, the carrier concentration and mobility are also optimized by Zn-doping and heat-treating. The simultaneous optimization of electrical and thermal transport properties contributes to a tremendous enhancement of average ZT to about 1.3 in the range from 323 K to 548 K (the maximum ZT is about 1.4 at 423 K) in the sample Mg0.97Zn0.03Ag0.9Sb0.95 with heat-treating for 10 days. The method we designed not only boosts the thermoelectric application of MgAgSb-based materials but also enables a synergetic strategy for designing thermoelectric materials with high thermoelectric performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据