4.7 Article

Development of Supraglacial Ponds in the Everest Region, Nepal, between 1989 and 2018

期刊

REMOTE SENSING
卷 11, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/rs11091058

关键词

glacial lake; supraglacial pond; Himalaya; Everest; remote sensing

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT)
  2. JSPS [JP16H05641]

向作者/读者索取更多资源

Several supraglacial ponds are developing and increasing in size and number in the Himalayan region. They are the precursors of large glacial lakes and may become potential for glacial lake outburst floods (GLOFs). Recently, GLOF events originating from supraglacial ponds were recorded; however, the spatial, temporal, and seasonal distributions of these ponds are not well documented. We chose 23 debris-covered glaciers in the Everest region, Nepal, to study the development of supraglacial ponds. We used historical Landsat images (30-m resolution) from 1989 to 2017, and Sentinel-2 (10-m resolution) images from 2016 to 2018 to understand the long-term development and seasonal variations of these ponds. We also used fine-resolution (0.5-2 m) WorldView and GeoEye imageries to reveal the high-resolution inventory of these features and these images were also used as references for accuracy assessments. We observed a continuous increase in the area and number of ponds from 1989-2017, with minor fluctuations. Similarly, seasonal variations were observed at the highest ponded area in the pre- and postmonsoon seasons, and lowest ponded area in the winter season. Substantial variations of the ponds were also observed among glaciers corresponding to their size, slope, width, moraine height, and elevation. The persistency and densities of the ponds with sizes >0.005 km(2) were found near the glacier terminuses. Furthermore, spillway lakes on the Ngozompa, Bhote Koshi, Khumbu, and Lumsamba glaciers were expanding at a faster rate, indicating a trajectory towards large lake development. Our analysis also found that Sentinel-2 (10-m resolution) has good potential to study the seasonal changes of supraglacial ponds, while fine-resolution (<2 m) imagery is able to map the supraglacial ponds with high accuracy and can help in understanding the surrounding morphology of the glacier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据