4.7 Article

Effect of Solution Composition Variables on Electrospun Alginate Nanofibers: Response Surface Analysis

期刊

POLYMERS
卷 11, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/polym11040692

关键词

nanofibers; electrospinning; alginate; polyethylene oxide; conductivity; viscoelastic properties; response surface methodology

资金

  1. Slovenian Research Agency through the Research Program [P1-0189, J1-9194, J4-7640]

向作者/读者索取更多资源

Alginate is a promising biocompatible and biodegradable polymer for production of nanofibers for drug delivery and tissue engineering. However, alginate is difficult to electrospin due to its polyelectrolyte nature. The aim was to improve the electrospinability' of alginate with addition of exceptionally high molecular weight poly(ethylene oxide) (PEO) as a co-polymer. The compositions of the polymer-blend solutions for electrospinning were varied for PEO molecular weight, total (alginate plus PEO) polymer concentration, and PEO proportion in the dry alginate-PEO polymer mix used. These were tested for rheology (viscosity, complex viscosity, storage and loss moduli) and conductivity, and the electrospun nanofibers were characterized by scanning electron microscopy. One-parameter-at-a-time approach and response surface methodology (RSM) were used to optimize the polymer-blend solution composition to obtain defined nanofibers. Both approaches revealed that the major influence on nanofiber formation and diameter were total polymer concentration and PEO proportion. These polymer-blend solutions of appropriate conductivity and viscosity enabled fine-tuning of nanofiber diameter. PEO molecular weight of 2-4 million Da greatly improved the electrospinnability of alginate, producing nanofibers with >85% alginate. This study shows that RSM can be used to design nanofibers with optimal alginate and co-polymer contents to provide efficient scaffold material for regenerative medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据