4.5 Article

Aedes aegypti HPX8C modulates immune responses against viral infection

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 13, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0007287

关键词

-

资金

  1. National Key Plan for Scientific Research and Development of China [2016YFD0500300]
  2. Strategic Priority Research Program of the CAS [XDB11030600, XDB11030800]
  3. National Basic Research Program of China [2014CB138405]

向作者/读者索取更多资源

Mosquitoes act as vectors of numerous pathogens that cause human diseases. Dengue virus (DENV) transmitted by mosquito, Aedes aegypti, is responsible for dengue fever epidemics worldwide with a serious impact on human health. Currently, disease control mainly relies on vector targeted intervention strategies. Therefore, it is imperative to understand the molecular mechanisms underlying the innate immune response of mosquitoes against pathogens. In the present study, the expression profiles of immunity-related genes in the midgut responding to DENV infection by feeding were analyzed by transcriptome and quantitative real-time PCR. The level of Antimicrobial peptides (AMPs) increased seven days post-infection (d.p.i.), which could be induced by the Toll immune pathway. The expression of reactive oxygen species (ROS) genes, including antioxidant genes, such as HPX7, HPX8A, HPX8B, HPX8C were induced at one d.p.i. and peaked again at ten d.p.i. in the midgut. Interestingly, down-regulation of the antioxidant gene HPX8C by RNA interference led to reduction in the virus titer in the mosquito, probably due to the elevated levels of ROS. Application of a ROS inhibitor and scavenger molecules further established the role of oxygen free radicals in the modulation of the immune response to DENV infection. Overall, our comparative transcriptome analyses provide valuable information about the regulation of immunity related genes in the transmission vector in response to DENV infection. It further allows us to identify novel molecular mechanisms underlying the host-virus interaction, which might aid in the development of novel strategies to control mosquito-borne diseases. Author summary HPX8C is a heme-containing peroxidase, which can move reactive oxygen species (ROS) damage to the organism by reducing H2O2 to H2O. Previously, the peroxidase gene has been shown to modulate midgut immunity and regulate anti-malarial response in mosquitoes. In this study, the classical immune signaling pathways, Toll and IMD genes might be late responses against the viruses. HPX8C was demonstrated here to play a role in antiviral immunity against DENV infection in Ae. Aegypti mosquitoes. HPX8C expression was induced by DENV infection and continued to increase with an elevated virus titer. In HPX8C-depleted mosquitoes, the ROS level was found to be increased with a corresponding decrease in the DENV and ZIKV virus titer. Therefore, it was speculated that HPX8C mediated immune responses against the DENV in the mosquito in the late stage of viral infection, which could be controlled by Toll pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据