4.6 Article

Evolution of major histocompatibility complex gene copy number

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 15, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1007015

关键词

-

资金

  1. Polish National Science Centre NCN grant [UMO-2013/08/A/NZ8/00153]
  2. PL-Grid infrastructure
  3. Poznan Supercomputing and Networking Center (PCSS) as part of the KDM computing grant [312]

向作者/读者索取更多资源

MHC genes, which code for proteins responsible for presenting pathogen-derived antigens to the host immune system, show remarkable copy-number variation both between and within species. However, the evolutionary forces driving this variation are poorly understood. Here, we use computer simulations to investigate whether evolution of the number of MHC variants in the genome can be shaped by the number of pathogen species the host population encounters (pathogen richness). Our model assumed that while increasing a range of pathogens recognised, expressing additional MHC variants also incurs costs such as an increased risk of autoimmunity. We found that pathogen richness selected for high MHC copy number only when the costs were low. Furthermore, the shape of the association was modified by the rate of pathogen evolution, with faster pathogen mutation rates selecting for increased host MHC copy number, but only when pathogen richness was low to moderate. Thus, taking into account factors other than pathogen richness may help explain wide variation between vertebrate species in the number of MHC genes. Within population, variation in the number of unique MHC variants carried by individuals (INV) was observed under most parameter combinations, except at low pathogen richness. This variance gave rise to positive correlations between INV and host immunocompetence (proportion of pathogens recognised). However, within-population variation in host immunocompetence declined with pathogen richness. Thus, counterintuitively, pathogens can contribute more to genetic variance for host fitness in species exposed to fewer pathogen species, with consequences to predictions from Hamilton-Zuk theory of sexual selection. Author summary Highly polymorphic genes of the Major Histocompatibility Complex (MHC) code for proteins responsible for presenting antigens to lymphocytes, thus initiating adaptive immune response. The polymorphism is driven by coevolution with parasites which are selected to evade recognition by MHC proteins. Expressing many MHC molecules could ensure that an individual could present antigens of most pathogen species encountered, but this comes at a cost, such as enhanced negative selection on lymphocytes leading to holes in T-cell receptor repertoire. Our simulations showed that evolution of the number of MHC genes in the genome is driven by a complex interaction between three factors we explored: pathogen richness, the intrinsic cost of expressing additional MHC variants, and pathogen mutation rate. In contrast to verbal arguments, our results indicate that pathogen richness does not always selects for MHC gene family expansion. Taking into account factors other than pathogen richness, in particular costs of expressing additional MHC variants which are still poorly understood, may help explain striking interspecific variation in the number of MHC genes. Counterintuitively, our results also demonstrated that opportunity for selection on immunocompetence should decrease with MHC gene family expansion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据