4.7 Article

Nanoscale Atomic Density Microscopy

期刊

PHYSICAL REVIEW X
卷 9, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.9.021002

关键词

-

资金

  1. NSF Physics Frontier Center, PFC@JQI [PHY1430094]
  2. ONR [N000141712411]
  3. U.S. Department of Defense (DOD) [N000141712411] Funding Source: U.S. Department of Defense (DOD)

向作者/读者索取更多资源

Quantum simulations with ultracold atoms typically create atomic wave functions with structures at optical length scales, where direct imaging suffers from the diffraction limit. In analogy to advances in optical microscopy for biological applications, we use a nonlinear atomic response to surpass the diffraction limit. Exploiting quantum interference, we demonstrate imaging with superresolution of lambda/50 and excellent temporal resolution of 500 ns. We characterize our microscope's performance by measuring the ensemble-averaged probability density of atoms within the unit cells of an optical lattice and observe the dynamics of atoms excited into motion. This approach can be readily applied to image any atomic or molecular system, as long as it hosts a three-level system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据