4.5 Article

Genomic signatures of adaptation to Sahelian and Soudanian climates in sorghum landraces of Senegal

期刊

ECOLOGY AND EVOLUTION
卷 9, 期 10, 页码 6038-6051

出版社

WILEY
DOI: 10.1002/ece3.5187

关键词

Africa; drought tolerance; local adaptation; selective sweeps; stay-green

资金

  1. United States Agency for International Development [AID-OAA-A-13-00047]

向作者/读者索取更多资源

Uncovering the genomic basis of climate adaptation in traditional crop varieties can provide insight into plant evolution and facilitate breeding for climate resilience. In the African cereal sorghum (Sorghum bicolor L. [Moench]), the genomic basis of adaptation to the semiarid Sahelian zone versus the subhumid Soudanian zone is largely unknown. To address this issue, we characterized a large panel of 421 georeferenced sorghum landrace accessions from Senegal and adjacent locations at 213,916 single-nucleotide polymorphisms (SNPs) using genotyping-by-sequencing. Seven subpopulations distributed along the north-south precipitation gradient were identified. Redundancy analysis found that climate variables explained up to 8% of SNP variation, with climate collinear with space explaining most of this variation (6%). Genome scans of nucleotide diversity suggest positive selection on chromosome 2, 4, 5, 7, and 10 in durra sorghums, with successive adaptation during diffusion along the Sahel. Putative selective sweeps were identified, several of which colocalize with stay-green drought tolerance (Stg) loci, and a priori candidate genes for photoperiodic flowering and inflorescence morphology. Genome-wide association studies of photoperiod sensitivity and panicle compactness identified 35 and 13 associations that colocalize with a priori candidate genes, respectively. Climate-associated SNPs colocalize with Stg3a, Stg1, Stg2, and Ma6 and have allelic distribution consistent with adaptation across Sahelian and Soudanian zones. Taken together, the findings suggest an oligogenic basis of adaptation to Sahelian versus Soudanian climates, underpinned by variation in conserved floral regulatory pathways and other systems that are less understood in cereals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据