4.5 Article

Machine learning of large-scale spatial distributions of wild turkeys with high-dimensional environmental data

期刊

ECOLOGY AND EVOLUTION
卷 9, 期 10, 页码 5938-5949

出版社

WILEY
DOI: 10.1002/ece3.5177

关键词

habitat suitability; maximum entropy; multicollinearity; predictive ecological niche models; random forests; regularization; support vector machines; wildlife management

资金

  1. Mississippi State University

向作者/读者索取更多资源

Species distribution modeling often involves high-dimensional environmental data. Large amounts of data and multicollinearity among covariates impose challenges to statistical models in variable selection for reliable inferences of the effects of environmental factors on the spatial distribution of species. Few studies have evaluated and compared the performance of multiple machine learning (ML) models in handling multicollinearity. Here, we assessed the effectiveness of removal of correlated covariates and regularization to cope with multicollinearity in ML models for habitat suitability. Three machine learning algorithms maximum entropy (MaxEnt), random forests (RFs), and support vector machines (SVMs) were applied to the original data (OD) of 27 landscape variables, reduced data (RD) with 14 highly correlated covariates being removed, and 15 principal components (PC) of the OD accounting for 90% of the original variability. The performance of the three ML models was measured with the area under the curve and continuous Boyce index. We collected 663 nonduplicated presence locations of Eastern wild turkeys (Meleagris gallopavo silvestris) across the state of Mississippi, United States. Of the total locations, 453 locations separated by a distance of >= 2 km were used to train the three ML algorithms on the OD, RD, and PC data, respectively. The remaining 210 locations were used to validate the trained ML models to measure ML performance. Three ML models had excellent performance on the RD and PC data. MaxEnt and SVMs had good performance on the OD data, indicating the adequacy of regularization of the default setting for multicollinearity. Weak learning of RFs through bagging appeared to alleviate multicollinearity and resulted in excellent performance on the OD data. Regularization of ML algorithms may help exploratory studies of the effects of environmental factors on the spatial distribution and habitat suitability of wildlife.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据