4.4 Article

Hall effect on Titania nanofluids thin film flow and radiative thermal behavior with different base fluids on an inclined rotating surface

期刊

AIP ADVANCES
卷 9, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5099435

关键词

-

向作者/读者索取更多资源

The present study is about the investigation of different aspects of viscous and electrically conducting Titania nanofluids with different base fluids. A three dimensional geometry is assumed for the steady nanofluid flow over an inclined rotating disk by applying magnetic field. The time- independent partial differential equations are constructed from the demonstrated geometry for the continuity, momentum and energy balance. By using similarity variables transformation these equations are reduced to a system of nonlinear ordinary differential equations. A numerical technique is used to solve the reduced system of equations. State variables are depicted to investigate the effects of various parameters with their variation. The influence of different physical parameters, like magnetic parameter M, Hall parameter m, porosity parameter y, radiation parameter Rd and thickness parameter delta are briefly discussed graphically. In addition, the Nusselt number and skin friction are discussed graphically. A comparison of the applied numerical approach with the homotopy analysis method is carried out in the tabular form. Tables show the reliability of our technique verses the homotopy analysis method. The convergence of the implemented technique is presented by graph for the number of iterations performed. (C) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据