4.7 Article

Microchannel Structural Design For a Room-Temperature Liquid Metal Based Super-stretchable Sensor

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-42457-7

关键词

-

资金

  1. National Natural Science Foundation of China [61803364, U1713219]
  2. Shenzhen Fundamental Research Project [JCYJ20180302145549896]
  3. Key Deployment Project of Chinese Academy of Sciences [KFZD-SW-214]
  4. SIAT Innovation Program for Excellent Young Researchers [2016053]

向作者/读者索取更多资源

Room-temperature liquid metal has been widely used in flexible and stretchable sensors, focusing on embedding liquid metal in microchannels, liquid metal microdroplets formation, captive sensors, and liquid metal nanoparticles, etc. In this paper, a facile Eutectic Galium-Indium (EGaln) liquid-based microfluidic high-sensitivity, skin-mountable, and ultra-soft stretchable sensor is developed. It comprises Ecoflex microfluidic assembly filled with EGaln, which serves as the working fluid of the stretchable sensor. The lithography method is applied to achieve microfluidic channel. The microfluidic channel is optimized by using topology method and finite element analysis, making this device with high conformability and high stretchability. This method achieved an outstanding effect on elastomer-encapsulated strain gauge, which displays an approximately linear behavior with a gauge factor (GF). The GF could reach as high as 4.95 when the strain ultimately reached 550%. Applications of detection of the joints, fingers, and wrists has been conducted and showed excellent results. This work can further facilitate the exploration and potential realization of a functional liquid-state device technology with superior mechanical flexibility and conformability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据