4.6 Article

Bi-doped fiber amplifiers and lasers [Invited]

期刊

OPTICAL MATERIALS EXPRESS
卷 9, 期 6, 页码 2446-2465

出版社

OPTICAL SOC AMER
DOI: 10.1364/OME.9.002446

关键词

-

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/I01196X/1, EP/P030181/1]
  2. EPSRC [EP/P030181/1, EP/I01196X/1, EP/N00762X/1] Funding Source: UKRI

向作者/读者索取更多资源

Bismuth (Bi) doped fibers have shown promising potential for lasers and amplifiers in the 1150-1500nm and 1600-1800nm wavelength region. Bi-doped aluminosilicate, phosphosilicate and germanosilicate fibers provide luminescence around 1150 nm, 1300 nm and 1450 nm, respectively. Recent results have demonstrated the possibility to extend the Bi luminescence window beyond 1600 nm using Bi-doped high (>= 50 mol %) germanosilicate fibers. These spectral regions can serve a wide range of applications in medicine, astronomy, defense and to extend the optical fiber communication. However, Bi-doped fiber lasers and amplifiers are still far from their optimum performance owing to the unclear nature of the near-infrared emitting Bi active centers. In this paper, we review the current state of the art of Bi-doped silica fiber lasers (CW and pulsed) and amplifiers in different wavelength bands. Also, we present our work on the development of Bi-doped aluminosilicate and phosphosilicate fiber lasers and amplifiers in the 1180 nm and 1330 nm bands. These lasers and amplifiers find applications in generating visible light sources and to access the second telecommunication window. The fibers used here were fabricated by modified chemical vapor deposition-solution doping technique and characterized for their unsaturable loss. Moreover, we present the influence of pump wavelengths on the gain, noise figure and laser efficiency of these Bi-doped fiber amplifiers and lasers. We also discuss Bi-doped fibers for pulsed laser application and demonstrate a mode-locked Bi-doped fiber laser operating at 1340 nm. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据