4.7 Article

Sulforaphane Prevents Hepatic Insulin Resistance by Blocking Serine Palmitoyltransferase 3-Mediated Ceramide Biosynthesis

期刊

NUTRIENTS
卷 11, 期 5, 页码 -

出版社

MDPI
DOI: 10.3390/nu11051185

关键词

sulforaphane; insulin resistance; glucose uptake; ceramide; liver

资金

  1. Major International (Regional) Joint Research Program of the Natural Science Foundation of China [NSFC 31471577, 31772014]
  2. Beijing Nova Program [Z181100006218071]
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Sulforaphane (SFA), a naturally active isothiocyanate compound from cruciferous vegetables used in clinical trials for cancer treatment, was found to possess potency to alleviate insulin resistance. But its underlying molecular mechanisms are still incompletely understood. In this study, we assessed whether SFA could improve insulin sensitivity and glucose homeostasis both in vitro and in vivo by regulating ceramide production. The effects of SFA on glucose metabolism and expression levels of key proteins in the hepatic insulin signaling pathway were evaluated in insulin-resistant human hepatic carcinoma HepG2 cells. The results showed that SFA dose-dependently increased glucose uptake and intracellular glycogen content by regulating the insulin receptor substrate 1 (IRS-1)/protein kinase B (Akt) signaling pathway in insulin-resistant HepG2 cells. SFA also reduced ceramide contents and downregulated transcription of ceramide-related genes. In addition, knockdown of serine palmitoyltransferase 3 (SPTLC3) in HepG2 cells prevented ceramide accumulation and alleviated insulin resistance. Moreover, SFA treatment improved glucose tolerance and insulin sensitivity, inhibited SPTLC3 expression and hepatic ceramide production and reduced hepatic triglyceride content in vivo. We conclude that SFA recovers glucose homeostasis and improves insulin sensitivity by blocking ceramide biosynthesis through modulating SPTLC3, indicating that SFA may be a potential candidate for prevention and amelioration of hepatic insulin resistance via a ceramide-dependent mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据