4.8 Article

The neural dynamics of hierarchical Bayesian causal inference in multisensory perception

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-019-09664-2

关键词

-

资金

  1. University of Tuebingen [2292-0-0, 2454-0-0]
  2. Deutsche Forschungsgemeinschaft (DFG) [RO 5587/1-1]
  3. ERC [309349]
  4. European Research Council (ERC) [309349] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Transforming the barrage of sensory signals into a coherent multisensory percept relies on solving the binding problem - deciding whether signals come from a common cause and should be integrated or, instead, segregated. Human observers typically arbitrate between integration and segregation consistent with Bayesian Causal Inference, but the neural mechanisms remain poorly understood. Here, we presented people with audiovisual sequences that varied in the number of flashes and beeps, then combined Bayesian modelling and EEG representational similarity analyses. Our data suggest that the brain initially represents the number of flashes and beeps independently. Later, it computes their numbers by averaging the forced-fusion and segregation estimates weighted by the probabilities of common and independent cause models (i.e. model averaging). Crucially, prestimulus oscillatory alpha power and phase correlate with observers' prior beliefs about the world's causal structure that guide their arbitration between sensory integration and segregation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据