4.8 Article

Microfluidic multipoles theory and applications

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-019-09740-7

关键词

-

资金

  1. Fond de Recherche du Quebec Nature et Technologies
  2. Fonds de Recherche du Quebec (FRQ)
  3. National Science and Engineering Research Council of Canada [NSERC - RGPIN - 06409]
  4. Canada First Research Excellence Fund (TransMedTech Institute)
  5. Cetoni GmbH

向作者/读者索取更多资源

Microfluidic multipoles (MFMs) have been realized experimentally and hold promise for open-space biological and chemical surface processing. Whereas convective flow can readily be predicted using hydraulic-electrical analogies, the design of advanced microfluidic multipole is constrained by the lack of simple, accurate models to predict mass transport within them. In this work, we introduce the complete solutions to mass transport in multipolar microfluidics based on the iterative conformal mapping of 2D advection-diffusion around a simple edge into dipoles and multipolar geometries, revealing a rich landscape of transport modes. The models are validated experimentally with a library of 3D printed devices and found in excellent agreement. Following a theory-guided design approach, we further ideate and fabricate two classes of spatiotemporally reconfigurable multipolar devices that are used for processing surfaces with time-varying reagent streams, and to realize a multistep automated immunoassay. Overall, the results set the foundations for exploring, developing, and applying open-space microfluidic multipoles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据