4.4 Article

Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma

期刊

ONCOLOGY LETTERS
卷 18, 期 1, 页码 720-732

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/ol.2019.10378

关键词

hepatocellular carcinoma; microvascular invasion; texture analysis; magnetic resonance imaging; prediction

类别

资金

  1. Peking Union Medical College Youth Fund
  2. Fundamental Research Funds for the Central Universities [2017320010]
  3. Chinese Academy of Medical Sciences (CAMS) Research Fund [ZZ2016B01]
  4. CAMS Innovation Fund for Medical Sciences [2016-I2M-1-001]

向作者/读者索取更多资源

The purpose of the present study was to investigate the value of contrast-enhanced magnetic resonance imaging (CE-MRI) texture analysis for preoperatively predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Accordingly, a retrospective study of 142 patients with pathologically confirmed HCC was performed. The patients were divided into two cohorts: The training cohort (n=99) and the validation cohort (n=43), including the MVI-positive group (n=53) and MVI-negative group (n=89). On the basis of three-dimensional texture analysis, 58 features were extracted from the preoperative CE-MR images of arterial-phase (AP) and portal-venous-phase (PP). The t-test or Kruskal-Wallis test, univariate logistic regression analysis and Pearson correlation were applied for feature reduction. Clinical-radiological features were also analyzed. Multivariate logistic regression analysis was used to build the texture model and combined model with clinical-radiological features. The MVI-predictive performance of the models was evaluated using receiver operating characteristic (ROC) analysis and presented using nomogram. Among the clinical features, a significant difference was found in maximum tumor diameter (P=0.002), tumor differentiation (P=0.026) and alpha-fetoprotein level (P=0.025) between the two groups in the training cohort. Four MR texture features in AP and five in PP images were identified through feature reduction. On ROC analysis, the AP texture model showed better diagnostic performance than did the PP model in the validation cohort, with an area under the curve (AUC) of 0.773 vs. 0.623, sensitivity of 0.750 vs. 0.500, and specificity of 0.815 vs. 0.926. Together with the clinical features, the combined model of AP improved the AUC, sensitivity and specificity to 0.810, 0.811 and 0.790, respectively, which was demonstrated in nomogram. To conclude, model-based texture analysis of CE-MRI could predict MVI in HCC preoperatively and noninvasively, and the AP image shows better predictive efficiency than PP image. The combined model of AP with clinical-radiological features could improve MVI prediction ability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据