4.7 Article

AP endonuclease 1 (Apex1) influences brain development linking oxidative stress and DNA repair

期刊

CELL DEATH & DISEASE
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41419-019-1578-1

关键词

-

资金

  1. CAS Team Project of the Belt and Road
  2. G. Harold and Leila Y. Mathers Charitable Foundation
  3. Northeastern University
  4. Three Hundred Leading Talents in Scientific and Technological Innovation Program of Chongqing [CSTCCXLJRC201714]
  5. Program of China-Sri Lanka Joint Research and Demonstration Center for Water Technology
  6. China-Sri Lanka Joint Center for Education and Research by Chinese Academy of Sciences, China

向作者/读者索取更多资源

Brain and neurons are particularly sensitive to reactive oxygen species (ROS). Oxidative damage from ROS results in increased 8-oxoguanine in DNA followed by repair through the base excision repair (BER) pathway. We reported earlier that AP endonuclease 1 (Apex1) not only participates directly in BER but also regulates transcription factor Creb1. Here, we investigated how Apex1 affects brain to respond effectively to oxidative damage during zebrafish development. Loss of Apex1 resulted in increased ROS, 8-oxoguanine, and abasic sites as well as loss of Ogg1, which recognizes 8-oxoguanine and is required for its repair. Moreover, knock-down of Apex1 not only resulted in reduction of expression of several major proteins in the BER pathway (Polb and Ogg1), and it also resulted in maldistribution and loss of four key brain transcription factors (fezf2, otx2, egr2a, and pax2a), leading to abnormal brain development. These results were independent of p53 protein level. In contrast, exposure to exogenous H2O2 resulted in increased transcription and protein of Apex1 along with other BER components, as well as Creb1. Taken together, these results indicate that oxidative stress increased when the level of Apex1 was reduced, revealing a novel pathway of how Apex1 manages oxidative stress in developing brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据