4.7 Article

Diverse small molecules prevent macrophage lysis during pyroptosis

期刊

CELL DEATH & DISEASE
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41419-019-1559-4

关键词

-

资金

  1. National Institute of Allergy and Infectious Diseases of the National Institutes of Health [K08AI119142]

向作者/读者索取更多资源

Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligandgated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient Glrb mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine. Together, these findings demonstrate that pyroptotic lysis can be pharmacologically modulated and pave the way toward identification of therapeutic strategies for pathologic conditions associated with pyroptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据