4.7 Article

Cryptococcus neoformans Glucuronoxylomannan and Sterylglucoside Are Required for Host Protection in an Animal Vaccination Model

期刊

MBIO
卷 10, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.02909-18

关键词

Cryptococcus neoformans; capsule; extracellular vesicles; fungal infection; glucuronoxylomannan; glycolipids; polysaccharides; sterylglucosides; vaccine; vesicles

资金

  1. NIH [AI116420, AI125770]
  2. Merit Review grant from the Veterans Affairs Program [I01BX002624]
  3. CNPq (Brazil) fellowship
  4. Brazilian agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [443586/2014-4, 300699/2013-1]
  5. Brazilian agency Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) [E-26/202.997/2015]
  6. Brazilian agency Instituto Nacional de Ciencia e Tecnologia de Inovacao em Doencas de Populacoes Negligenciadas (INCT-IDPN)

向作者/读者索取更多资源

Cryptococcus neoformans is an encapsulated fungal pathogen that causes meningoencephalitis. There are no prophylactic tools for cryptococcosis. Previously, our group showed that a C. neoformans mutant lacking the gene encoding sterylglucosidase (Delta sgl1) induced protection in both immunocompetent and immunocompromised murine models of cryptococcosis. Since sterylglucosidase catalyzes degradation of sterylglucosides (SGs), accumulation of this glycolipid could be responsible for protective immunity. In this study, we analyzed whether the activity of SGs is sufficient for the protective effect induced by the Delta sgl1 strain. We observed that the accumulation of SGs impacted several properties of the main polysaccharide that composes the fungal capsule, glucuronoxylomannan (GXM). We therefore used genetic manipulation to delete the SGL1 gene in the acapsular mutant Delta cap59 to generate a double mutant (strain Delta cap59/Delta sgl1) that was shown to be nonpathogenic and cleared from the lung of mice within 7 days post-intranasal infection. The inflammatory immune response triggered by the Delta cap59/Delta sgl1 mutant in the lung differed from the response seen with the other strains. The double mutant did not induce protection in a vaccination model, suggesting that SG-related protection requires the main capsular polysaccharide. Finally, GXM-containing extracellular vesicles (EVs) enriched in SGs delayed the acute lethality of Galleria mellonella against C. neoformans infection. These studies highlighted a key role for GXM and SGs in inducing protection against a secondary cryptococcal infection, and, since EVs notoriously contain GXM, these results suggest the potential use of Delta sgl1 EVs as a vaccination strategy for cryptococcosis. IMPORTANCE The number of deaths from cryptococcal meningitis is around 180,000 per year. The disease is the second leading cause of mortality among individuals with AIDS. Antifungal treatment is costly and associated with adverse effects and resistance, evidencing the urgency of development of both therapeutic and prophylactic tools. Here we demonstrate the key roles of polysaccharide- and glycolipidcontaining structures in a vaccination model to prevent cryptococcosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据