4.7 Article

Azithromycin Dose To Maximize Efficacy and Suppress Acquired Drug Resistance in Pulmonary Mycobacterium avium Disease

期刊

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
卷 60, 期 4, 页码 2157-2163

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.02854-15

关键词

-

向作者/读者索取更多资源

Mycobacterium avium complex is now the leading mycobacterial cause of chronic pneumonia in the United States. Macrolides and ethambutol form the backbone of the regimen used in the treatment of pulmonary disease. However, therapy outcomes remain poor, with microbial cure rates of 4% in cavitary disease. The treatment dose of azithromycin has mostly been borrowed from that used to treat other bacterial pneumonias; there are no formal dose-response studies in pulmonary M. avium disease and the optimal dose is unclear. We utilized population pharmacokinetics and pharmacokinetics/pharmacodynamics-derived azithromycin exposures associated with optimal microbial kill or resistance suppression to perform 10,000 patient Monte Carlo simulations of dose effect studies for daily azithromycin doses of 0.5 to 10 g. The currently recommended dose of 500 mg per day achieved the target exposures in 0% of patients. Exposures associated with optimal kill and resistance suppression were achieved in 87 and 54% of patients, respectively, only by the very high dose of 8 g per day. The azithromycin susceptibility breakpoint above which patients failed therapy on the very high doses of 8 g per day was an MIC of 16 mg/liter, suggesting a critical concentration of 32 mg/liter, which is 8-fold lower than the currently used susceptibility breakpoint of 256 mg/liter. If the standard dose of 500 mg a day were used, then the critical concentration would fall to 2 mg/liter, 128-fold lower than 256 mg/liter. The misclassification of resistant isolates as susceptible could explain the high failure rates of current doses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据