4.8 Article

Application of IWA Anaerobic Digestion Model No. 1 to simulate butyric acid, propionic acid, mixed acid, and ethanol type fermentative systems using a variable acidogenic stoichiometric approach

期刊

WATER RESEARCH
卷 161, 期 -, 页码 242-250

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.05.094

关键词

Modelling; Fermentation type; Variable stoichiometry; ADM1; Hydrogen partial pressure

资金

  1. Fundamental Research Funds for Colleges and Universities in Liaoning Province, China [LJZ2017044]
  2. Natural Science Foundation of Liaoning Province, China [20180510052]
  3. Initial Scientific Research Fund of Shenyang Jianzhu University, China [S121500319]

向作者/读者索取更多资源

IWA Anaerobic Digestion Model No. 1 (ADM1) is the most widely recognised and popular mathematical model for anaerobic digestion processes. However, the application of ADM1 to acidogenic fermentation is limited by its use of constant stoichiometry to describe the formation of products via carbohydrate fermentation. This study presents a modification of ADM1 using a variable acidogenic stoichiometric approach in which the hydrogen partial pressure (pH2) and pH are used to predict and regulate the acidogenic process. The fermentation of ethanol and its kinetics were introduced into the model structure. Experimental data from mixed acid-type fermentation in a 28.4 L anaerobic baffled reactor (ABR) fed with a sucrose solution with a chemical oxygen demand of 4000 mg L-1 were used to calibrate the model parameters. Two case studies involving continuous ethanol-type fermentation in an ABR and a continuous stirring tank reactor (CSTR) were used to validate the approach. The modified model achieved good predictions of the experimental data collected from butyric acid, propionic acid, mixed acid, and ethanol-type fermentation in the ABR and CSTR using the standard ADM1 parameter values without any parameter fitting beyond implementation of the variable acidogenic stoichiometry. The pH2 and pH thresholds in butyric acid, propionic acid, mixed acid, and ethanol-type fermentation could be predicted using this model, which was shown to be a valid mathematical tool for the regulation of fermentation type. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据