4.5 Article

MODELING OF MICROBUBBLE-ENHANCED HIGH-INTENSITY FOCUSED ULTRASOUND

期刊

ULTRASOUND IN MEDICINE AND BIOLOGY
卷 45, 期 7, 页码 1743-1761

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ultrasmedbio.2019.02.022

关键词

High-intensity focused ultrasound; Microbubbles; Bubble dynamics; Numerical modeling; Cancer treatment

资金

  1. National Institutes of Health under Small Business Innovation Research Grant [1R43CA213866-01A1]

向作者/读者索取更多资源

Heat enhancement at the target in a high intensity focused ultrasound (HIFU) field is investigated by considering the effects of the injection of microbubbles in the vicinity of the tumor to be ablated. The interaction between the bubble cloud and the HIFU field is investigated using a 3-D numerical model. The propagation of non-linear ultrasonic waves in the tissue or in a phantom medium is modeled using the compressible Navier-Stokes equations on a fixed Eulerian grid, while the microbubbles dynamics and motion are modeled as discrete singularities, which are tracked in a Lagrangian framework. These two models are coupled to each other such that both the acoustic field and the bubbles influence each other. The resulting temperature rise in the field is calculated by solving a heat transfer equation applied over a much longer time scale. The compressible continuum part of the model is validated by conducting axisymmetric HIFU simulations without microbubbles and comparing the pressure and temperature fields against available experiments. The coupled Eulerian-Lagrangian approach is then validated against existing experiments conducted with a phantom tissue. The bubbles are distributed randomly in a 3-D fashion inside a cylindrical volume, while the background acoustic field is assumed axisymmetric. The presence of microbubbles modifies the ultrasound field in the focal region and significantly enhances heat deposition. The various mechanisms through which heat deposition is increased are then examined. Among these effects, viscous damping of the bubble oscillations is found to be the main contributor to the enhanced heat deposition. The effects of the initial void fraction in the cloud are then sought by considering the changes in the attenuation of the primary ultrasonic wave and the modifications of the enhanced heat deposition in the focal region. It is observed that although high bubble void fractions lead to increased heat deposition, they also cause significant pre-focal heating because of acoustic shielding. The effects of the microbubble cloud size and its location in the focal region are studied, and the effects of these parameters in altering the temperature rise and the location of the temperature peak are discussed. It is found that concentrating the bubbles adjacent to the focus and farther away from the acoustic source leads to effective heat deposition. Finally, the presence of a shell at the bubble surface, as in contrast agents, is seen to reduce heat deposition by restraining bubble oscillations. (C) 2019 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据