4.4 Article

Real-Time Crash Risk Prediction using Long Short-Term Memory Recurrent Neural Network

期刊

TRANSPORTATION RESEARCH RECORD
卷 2673, 期 4, 页码 314-326

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0361198119840611

关键词

-

向作者/读者索取更多资源

With the help of traffic detectors widely deployed along arterial roads and intersections, real-time traffic data are collected and updated in a very short time period, which makes it possible to conduct real-time analysis at signalized intersections. Among them, real-time crash risk prediction is one of the most promising and challenging research topics. This study attempts to predict real-time crash risk by considering time series dependency with the employment of a long short-term memory recurrent neural network (LSTM-RNN) algorithm. Also, the synthetic minority over-sampling technique (SMOTE) was utilized in this study to generate a balanced training dataset for algorithm training. In comparison, a conditional logistic model was developed based on matched case control design. Both models were evaluated based on the real-world unbalanced test dataset rather than an artificially balanced dataset. The comparison results indicate that the LSTM-RNN with SMOTE outperforms the conditional logistic model. The methods and findings of this study attempt to verify the feasibility of real-time crash risk prediction by using LSTM-RNN with over-sampled dataset (SMOTE).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据