4.4 Article

Real-Time Pedestrian Detection Approach with an Efficient Data Communication Bandwidth Strategy

期刊

TRANSPORTATION RESEARCH RECORD
卷 2673, 期 6, 页码 129-139

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0361198119843255

关键词

-

资金

  1. Center for Connected Multimodal Mobility (C2M2) grant headquartered at Clemson University

向作者/读者索取更多资源

Vehicle-to-pedestrian communication could significantly improve pedestrian safety at signalized intersections. However, it is unlikely that pedestrians will typically be carrying a low latency communication-enabled device with an activated pedestrian safety application in their hand-held device all the time. Because of this, multiple traffic cameras at a signalized intersection could be used to accurately detect and locate pedestrians using deep learning, and broadcast safety alerts related to pedestrians to warn connected and automated vehicles around signalized intersections. However, the unavailability of high-performance roadside computing infrastructure and the limited network bandwidth between traffic cameras and the computing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we describe an edge computing-based real-time pedestrian detection strategy that combines a pedestrian detection algorithm using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining high pedestrian detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff between the reduction of the communication bandwidth requirements and a defined pedestrian detection accuracy. The performance of the pedestrian detection strategy is measured in relation to pedestrian classification accuracy with varying peak signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak signal-to-noise ratio 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 31 x reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据