4.7 Article

Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S1003-6326(19)64977-0

关键词

pulse laser welding; aluminium alloy; thin sheet; microstructure; mechanical properties; solidification cracking; intermetallic compound

资金

  1. Universiti Sains Malaysia under the Teaching Fellowship Scheme

向作者/读者索取更多资源

Pulse laser welding of 0.6 mm-thick AA5052-H32 was performed to determine the optimum set of parameters including laser pulse current, pulse frequency and pulse duration that meets the AWS D17.1 specifications for aerospace industry. The microstructure and mechanical properties of the weldments were also investigated. Relationships between the parameters and weld bead geometry were found. High quality weld joints without solidification crack that met AWS D17.1 requirements were obtained at (I) high pulse energy (25 J) and high average peak power (4.2 kW) and (II) low pulse energy (17.6 J) and low average peak power (2.8 kW). The weld joint formed at lower heat energy input exhibited finer dendritic grain structure. Mg vapourisation and hard phase compound (Al0.5Fe3Si0.5) formation decreased in the weld joint formed at lower heat energy input. Consequently, the tensile strength of the weldment formed at lower heat energy input (168 MPa) is by a factor of 1.15 higher but showed similar to 29% decrease in hardness (111 HV0.1) at the joint when being compared with the weldment formed at higher heat energy input. Appropriate parameters selection is critical to obtaining 0.6 mm-thick AA5052-H32 pulse laser weld joints that meet AWS D17.1 requirements for aircraft structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据