4.2 Article

Molecular modelling predicts that 2-methoxyestradiol disrupts HIF function by binding to the PAS-B domain

期刊

STEROIDS
卷 144, 期 -, 页码 21-29

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.steroids.2019.02.004

关键词

2-Methoxyestradiol; Angiogenesis; Human granulosa cells; HIF1A protein; HIFB protein; Estradiol; Estradiol metabolites

资金

  1. Chilean National Fund for Scientific and Technological Development (FONDECYT) [1140693]

向作者/读者索取更多资源

An estradiol metabolite, 2-methoxyestradiol (2ME), has emerged as an important regulator of ovarian physiology. 2ME is recognized as a potent anti-angiogenic agent in clinical trials and laboratory studies. However, little is known about its molecular actions and its endogenous targets. 2ME is produced by human ovarian cells during the normal menstrual cycle, being higher during regression of the corpus luteum, and is postulated to be involved in the anti-angiogenic process that plays out during luteolysis. We utilized cell biology techniques to understand the molecular mechanism of 2ME anti-angiogenic effects on human granulosa luteal cells. The principal effect of 2ME was to alter Hypoxia Inducible Factor 1A (HIF1A) sub cellular localization. Molecular modelling and multiple bioinformatics tools indicated that 2ME impairs Hypoxia Inducible Factor complex (HIF) nuclear translocation by binding to a buried pocket in the HIF1A Per Arnt Sim (PAS)-B domain. Binding of 2ME to HIF1A protein is predicted to perturb HIF1A-Hypoxia Inducible Factor B (HIFB) interaction, a key step in HIF nuclear translocation, preventing the transcriptional actions of HIF, including Vascular Endotelial Growth Factor (VEGF) gene activation. To our knowledge, 2ME is the first putative HIF endogenous ligand characterized with anti-angiogenic activity. This postulate has important implications for reproduction, because angiogenic processes are critical for ovarian follicular development, ovulation and corpus luteum regression. The present research could contribute to the development of novel pharmacological approaches for controlling HIF activity in human reproductive diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据